童金英

基本信息姓名童金英
系别统计系
职称副教授
联系方式见学院黄页
电子邮件jytong@dhu.edu.cn
研究方向马氏过程的遍历性及应用
个人简介研究方向为马氏过程遍历性及其在生物、利率等方面的应用研究。
学习经历起止年月学校专业学位/学历
2004/09-2010/06中南大学概率论与数理统计博士/研究生
2004/09-2007/07中南大学概率论与数理统计硕士/研究生
工作经历起止年月单位职称/职务
20010/07-2014/095845威尼斯官网主页讲师
2014/10-至今5845威尼斯官网主页副教授
教学成果课程名称
公共课:概率论与数理统计,一元微积分;高等数学C;
专业课:抽样调查;抽样调查设计;多元分析;
科研成果研究名称
完成一项国家自然科学基金项目专项基金(批准号:11126254)
完成国家自然科学基金青年基金项目(批准号:14K10953)    
在研上海市自然科学基金面上项目(批准号:19ZR1400600)
代表性论文&科研
[1] J. Tong, Y. Sun, Z. Zhang, T. Zhou, Z. Qin, Some charaterizations for the CIR model with Markov switching, Stochastic and Dynamics, 2021:2150022, 19 pages.
[2] J. Tong, Q. Meng, Z. Zhang, Y. Lu, A note on ergdocity for CIR model with Markov switching,  Communications in Statistics- Simulation and Computation, 2021, 50(5): 1445-1458.
[3] Z.Zhang, J.Tong, L.Hu, Ultracontractivity for Brownian motion with Markov switching, Stochastic Analysis & Applications, 2019, 37(3):445-457.
[4]J. Tong, X. Ma, Z. Zhang, E. Zhu, Ergodicity for population dynamics driven by stable processes with Markovian switching, Communication in Statistics-Theory and Methods, 2019, 48(10), 2446-2458.
[5] J. Tong, X., Jin, Z. Zhang, Exponential ergodicity for SDEs driven by  -stable processes with Markov switching in  Wasserstein distances, Potential Analysis, 49:503-526, 2018.
[6] J.Tong, Z.Zhang, Exponential ergodicity of CIR interest rate model with  switching, Stochastic and Dynamics, 201717(5), 1750037, 20pages.
[7] Z.Zhang, J. Tong, L. Hu, Long-term behavior of stochastic interest rate models with Markov switching, Insurance: Mathematics and Economics, 2016, 70, 320-326,
[8] J.Tong, Z. Zhang, R. Dai, Weighted scale-free networks induced by group preferential mechanism. Physica A: Statistical Mechanics and its Applications, 2011, 390(10):1826-1833.
[9] J. Tong, Z. Hou, Z.Zhang, Degree correlations in group preferential model.  Journal of Physics A: Mathematical and Theoretical, 2009, 42: 275002-275011.
[10] Z. Hou, J.Tong,  Z. Zhang, Convergence of jump-diffusion non-linear differential equation with semi-Markovian switching.   Applied Mathematical Modeling, 2009, 33(9):3650-3660.